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Objectives

The objective of this research is to develop analysis procedures to investigate the coupling of

composite and smart materials to improve aeroelastic and vibratory response of aerospace

structures. The structural modeling must account for arbitrarily thick geometries, embedded and

surface bonded sensors and actuators and imperfections, such as delamination. Changes in the

dynamic response due to the presence of smart materials and detaminations is investigated.

Experiments are to be performed to validate the proposed mathematical model.

Introduction

Laminated composite structural elements with surface bonded/embedded sensors and actuators

offer great potential for static and dynamic control. Essential to designing these advanced

structures are accurate and efficient mathematical modeling techniques. Imperfections, such as

delaminations, are common to most composites and must be included in the analysis procedure.

Several mathematical models have appeared in the literature for the analysis of adaptive beams and

plates. These include investigations based on the classical theory [1,2], which is limited to the

analysis of thin plates, first order Mindlin type analyses [3,4] and potentially expensive layer-wise

theories [5,6]. A hybrid theory has also been presented by Mitchel and Reddy [7]. Higher order

refined theory is both accurate and computationally efficient and have been shown to be useful for

modeling smart composite laminates {8,9]. Finite element models {3,5,9] are attractive since they

can include practical geometries and boundary conditions.
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Several efforts for modeling delamination of composite laminates have been presented in the

literature. Although three dimensional approaches [10,11] are more accurate than two dimensional

theories [12-15], their implementation can be very expensive for practical applications. The layer-

wise approach [16] is an alternative since it is capable of modeling displacement discontinuities.

However, the computational effort increases with the number of plies. Recently, a refined higher

order theory, developed by Gu and Chattopadhyay [17], was shown to be an efficient approach for

modeling delaminations. This theory has been shown to agree well with both elasticity solutions

[18] and experimental results [17].

Relatively little attention in the literature has been paid to modeling delaminated smart

composites with surface bonded/embedded piezoelectric actuators and sensors [19,20]. Therefore,

the goal of the current work is to investigate this important topic. The refined higher order theory

is used. This theory allows for transverse shear deformation which is especially important in the

analysis of composites thick composites. It also allows for both slipping and separation of the

delaminated regions. The finite element implementation allows practical geometries and boundary

conditions to be modeled as well.

Analysis

In the developed theory, the composite laminate is divided into several regions which represent

the nondelaminated zone and portions of the composite laminate above and below the delamination.

The refined theory is implemented in each region by satisfying the stress free boundary conditions

which occur at the top and bottom surfaces of the laminate as well as at the delamination interface.

This allows several of the higher order functions to be determined in terms of the lower order

functions. Continuity conditions are formulated between the regions. These conditions are

enforced in the finite element implementation using a penalty approach. The theory can be easily

generalized to include multiple piezoelectric sensors, actuators and delaminations as shown in Fig.

1.

The general displacement field with parameters indicated in Fig. 2 is defined as follows.
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where U, V and W are the total displacements, u, v and w denote the midplane displacements of a

point (x,y), the partial derivatives of w represent the rotations of normals to the midplane

corresponding to the slope of the laminate and Cx and Cy represent the additional rotations due to

shear deformation about the y and x axes, respectively. The quantities u2, u3, v2 and v3 represent

higher order functions. This displacement field has the advantage of easily reducing to the well

known classical theory if the higher order terms are eliminated. The thickness coordinate, z, is

measured from the global midplane of the laminate and c is the local midplane where c = 0 for an

undelaminated composite.

Constitutive relations

Equations which relate stress, strain, charge and electric field are derived from the electric

enthalpy density function given as follows.

H(eij,Ei ) 1 _I kijEiE j= "2 Cijklgij F'kl - eijkEigjk (2)

where qj and Ei are components of the strain tensor and electric field vector, respectively and c0u,

%k, and k 0 are the elastic, piezoelectric and dielectric permittivity constants, respectively. The

stress and charge are determined as follows.
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For an orthotropic composite laminate with piezoelectric layers that have orthorhombic mm2

symmetry in the context of laminate theory, the constitutive relationships are simplified as follows.
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strains (A 1 = A 2 = d31E3). It is important to note that engineering normal

(al-3) and shear (a4-6) strains are now used in the above equations, a3 is set to zero and only the

inplane piezoelectric constants (d31 and d32 ) are retained in the context of the current work.

Refined displacement field

To account for the effects due to delamination, it is necessary to partition the laminate into

several different regions shown in Fig. 3. These regions include the nondelaminated region (,Q),

the region above the delamination (f2d2) and the region below the delamination (-(-2d3). The

interface between the nondelaminated region and the delaminated regions, indicated by the dashed

line in Fig. 3, is denoted D.I. The general form of the higher order displacement field (Eqn. 1) is

independently applied to each of these regions to describe displacements which account for

slipping and separation due to the delamination. However, this displacement field does not

necessarily satisfy the condition that the transverse shear stresses, o4 and (75, vanish at the top and

bottom surfaces of the plate (z = +h/2) as well as on the debonded interface surfaces (z = hi)in the

delaminated region. That is,

O'4(x'Y'---h/2) = 0' C_5(x'Y,-+h / 2) = 0 (7)

Gg(x,y, hl)=O, Gs(X,y, hl)=O (x,y)_-Q d (_)

in which the superscripts "+" and "-" denote the quantities related to the layers above and below the

delamination, respectively, and Qd refers to the region that contains the delamination. For

orthotropic plates, these conditions are equivalent to the requirement that the corresponding strains



be zero on these surfaces.

conditions for each region as follows.
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A refined displacement field is obtained by applying these boundary

(9)

where c_ - (a_ +2bi ) is the local midplane and d i = b i - a i is the thickness of the region. The

quantities a i and b i correspond to the bottom and top coordinates of the local region, respectively,

as shown in Fig. 4. It is important to note that several of the higher order terms in the generalized

displacement field are either found to be zero or defined in terms of lower order functions. The

displacements in each region are defined by independent functions with parameters given as

follows.

when i=l bi t_h/2j. (x,y)en (10a)

when i=2 bi _. h 1 J' - (10b)

{,}-{when i=3 bi -hi2' (x'Y)_'Q_3 (]0c)

It is important to note that the thickness of the plate, h, may vary due to the presence of surface

bonded sensors/actuators.

Continuity Conditions

Additional boundary conditions must be imposed to ensure continuity of displacements at the

interface of the nondelaminated and delaminated regions (-QI) as shown in Fig. 5. A vector of the

displacements is constructed to simplify formulation of the boundary conditions as follows.

u, : v, (11)
LW,_l

The continuity conditions at the interface of the nondelaminated and delaminated regions (D.l) , are

imposed as follows.
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The above equations can be satisfied exactly for the classical theory since the displacement

distribution through the thickness is linear. However, the displacement distribution using the

refined theory is nonlinear and must be satisfied in an average sense as follows. An error function

vector for the first of the above equations is formulated as follows.

e = Ui=, -Ui= 2 hl<z<h/2 (x,y) _ .Q1 (14)

It is desired to minimize the difference between U,=_ and U__z at each point through the thickness

in _I. This can be accomplished by first integrating the square of the error through the thickness

as follows.

b

a

15)

where a and b define the limits of integration through the thickness as indicated in the interval given

in Eqn. 13 These integration limits must be considered carefully since the presence of surface

bonded actuators/sensors may change the dimensions of the laminate in any of the regions. It is

desired to find a relationship between the independent functions in f2 and f'2.dl which minimizes the

error in terms of the functions in the nonde]aminated region to satisfy the continuity conditions.

Therefore, derivatives of E are taken with respect to the independent functions in D.dl and are set to

zero as follows.
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Taking derivatives and rearranging the above equations leads to the following relationships which

satisfy the continuity conditions.
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where i = 2 and the above relationships correspond to .Q and a'_d2 , respectively. The constants oq,

13i, and Yi are as follows.
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5263ci" 72a2czci- 136abclci- 72b2qci" 140acj2ci" 140bc12ci- 156a2ci 2- 388abci 2- 156b2ci2 + 280ac)c?

+ 280bClCi2 + 140c12ci2 + 140aci3 + 140bci3 " 280clci 3 " 27a:dl 2 " 51abdl 2 - 27b2d] 2 + 105acidl2 +

105bcidl 2 - 105ci2d12)/(3(9a 2 + 17ab + 9b 2 - 35ac i - 35bc i + 35ci2)dl2

(18)

13i = (18a z + 34ab + 18b 2 - 35ac] - 35bcj - 35ac i - 35bc i + 70clci)di2/(2(9a -_ + 17ab + 9b 2 - 35ac i - 35bci +
35ci2)di 2)

(19)
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+ 70bcidl 2 - 70ci2dl 2 + lga2di 2 + 34abdi 2 + ]Sb2di 2 - 35acldi 2 - 35bc_di2 - 35acidi 2 - 35bcidi 2 +

70clcid,2)/(2(9a 2 + 17ab + 9b 2 - 35ac i - 35bc i + 35ci'-)dl2)

(20)

Identical expressions are formulated which correspond to _Q and X")d3by setting i = 3. Multiple

delaminations can be incorporated into the developed theory by defining additional regions of

delamination at arbitrary locations in the laminate (i.e. i = I, 2, 3, 4, 5, 6 ...).



Finite element analysis

The finite elementequationsarederivedusingthediscretizedform of Hamilton's principle,

which isstatedasfollows.

Ne

8H = 8Ke - 5U _ + 8W _ t = 0 (21)
I e=l

where tl and t2 are the initial and the final times, respectively and 8K e, 5U e and 8W e are the

element variations in the kinetic, strain and potential energies, respectively. The finite element

matrices are formulated as follows.

I I e =1

where Ne is the number of elements, an overdot indicates a derivative with respect to time and the

nodal degrees of freedom for each element, u_, are specified as follows.

[ aw. aw. ]-ru_.= un v. w. clx ay ¢_o Cy° (23)

Elemental nodes for the nondelaminated and delaminated regions are placed at the local midplanes

of each region as shown in Fig. 6. The mass matrix, M e, is formulated as follows.

ble= fP NeTZNedAe (24)
A e

where P is the density, N e contains the elemental shape functions and Z contains the z dependence

of the displacement fields. The stiffness matrix, K _, includes bending and extension terms

(subscript B) and transverse shear terms (subscript T)

= BB ABBBdA + BTATBrdA (25)

A e A e

where AB and AT are laminate stiffness matrices and B; and g_r relate the strains to the interpolated

functions. The subscripts "B" and "T" correspond to the extension/bending and transverse shear

strains, respectively. Two force vectors are formulated for the distributed load, F_ , and the

piezoelectric forces, F_, .

F¢= fN;Tp_(x, Y)dA" (26)
A e



F_, = fN_TAB AdA e (27)
A e

The linear finite element equations of motion are obtained as follows.

M/i + Ku = F + Fp (28)

where the quantities M, K, F and w denote the mass and stiffness matrices, the force vector due

to a distributed load and the nodal displacement vector, respectively. The quantity Fp is the force

vector due to the piezoelectric actuation. Bilinear shape functions are used for the inplane

displacements and rotations (u, v, _x, £by) while a 12 term cubic polynomial is used for the

transverse displacements (w). The resulting four noded rectangular elements are nonconforming

for computational efficiency and contain 28 degrees of freedom each.

Implementation of continuity conditions

The continuity conditions between the nondelaminated and delaminated regions need to be

included in the finite element model by constraining the nodal deuees of freedom at the interface of

the nondelaminated and the delaminated regions. Applying these constraints directly to Eqn. 28

leads to a nonsymmetric system of equations which results in undesirable consequences in the

solution technique. A different approach must be used. The continuity conditions presented in

Eqns. 17a-g for the regions _ and X").d2 , as well as similar conditions for the regions El and _")-d3,

are applied to the finite element degrees of freedom at the interface of the nondelaminated and

delaminated regions (g2i) presented in matrix form as follows.

Rfi = 0 (29)

where fi, which is a subset of the u, contains the degrees of freedom in x"lj and is partitioned as

follows

I ui=l ]

(30)
LUi=BJ

and ui contains the nodal displacements in the i-th region (i.e. i = 1 refers to _ as before) which

are also contained in -QIas follows. A similar relationship is defined for ii. The matrix R has the

following form.



Ri= -I 0 1R = (31)
i_Ri=3 0 -I

where the first column contains the submatrices Ri= 3 and Ri= 3 which in turn contain factors in

terms of ai, bi and h. The exact formulation for these submatrices will be presented in the final

paper. The Lagrangian for the discretized system is formulated as follows

where the first four terms are the kinetic, strain and potential energies due to an applied load and

piezoelectric actuation, respectively. The last two terms are penalty terms for the displacements

and velocities multiplied by a penalty factor, p, to satisfy the continuity conditions at f2 I.

Differentiation of L with respect to the nodal degrees of freedom using the Lagrange technique

allows the equations of motion to be reformulated to include the constraint terms while retaining

symmetry. The resulting augmented equations are as follows.

[M + pP]ii +[K + pP]u = F + F e (33)

where P is the penalty matrix defined as follows.

P : RTR (34)

which is expanded to correspond to the global degrees of freedom (u).

Preliminary Results

Static response

Some numerical and experimental results are presented for a cantilever Gr/Ep composite plate

with stacking sequence [00/90o/00]6 and dimensions L = 25cm, W = 10cm, and h = 2.286mm. The

thickness of each ply is 0.127ram which is typically used by industry. Plies numbered 13-16 are

replaced with a single PZT piezoelectric layer of thickness 0.381ram which represents a

commercially available piezoelectric material thickness. Material properties are presented in Table

1. The plate mesh has 25x10 elements and 2002 degress of freedom. The undeformed mesh with

no delaminations is presented in Fig. 7. The piezoelectric layer is energized with a constant voltage

of 150 volts. Both longitudinal bending and camber deflections are present due the actuation as

10



shown in Fig. 8. This is because the piezoelectric layer is offset from the neutral axis of the plate

which produces bending moments about the X and Y axes. The finite element results correlate

well with sample static experimental tests as shown in Fig. 9. In this figure, the transverse

displacement is denoted (w*) and is normalized with respect to its maximum value. The

lengthwise coordinate is denoted (x*) and is normalized to the length of the plate.

Next, the effects due to delamination are investigated using the above smart plate properties.

Delamination is introduced at the interface between the composite substructure and the piezoelectric

layer (plies 12 and 13) at the free end of the plate through the entire width ( 20 cm < x < 25 cm, 0

cm < y < 10 cm). The mesh for the composite substructure, located at the midplane of the

nondelaminated portion of the plate, comprises 20x10 elements. Two additional 5x10 meshes are

generated above and below the delamination at the midplanes of each respective region. These

meshes are offset from the midplane of the undelaminated portion of the plate as shown in Fig. 10.

It is important to note that Figs. 10 and 11 are not to scale so that the different meshes may be

easily identified. Continuity at the interface of each of these delaminated regions and the composite

substructure region is obtained by implementing the continuity conditions and penalty approach

discussed earlier. The total number of degrees of freedom for the delaminated plate is 2541.

Again, the piezoelectric layer is energized with a constant voltage of 150 volts. The static

deflection in this case (Fig. 11) is significantly different from the first case (Fig. 8) where actuation

produced bending which resulted in negative transverse displacements. The nondelaminated

portion of the plate bends downward as before, as does the region below the delamination.

However, the region above the delamination bends in a positive transverse direction. This is

because the offset of the piezoelectric layer from the local midplane in the delaminated region is

opposite the offset in the nondelaminated region. This results in a reversal of the bending moment

due to the piezoelectric actuation and a positive transverse displacement. These preliminary results

indicate that a thorough understanding of the effects due to delamination is critical to designing

structures with smart composite materials. The final paper will present additional results to

II



investigatethe effect of delaminationon thestatic and dynamicresponseof a smartcomposite

laminate.

Dynamic response

In this section,resultsarepresentedto demonstratehow thedevelopedtheorycanbeusedto

investigateissuesrelatedto active control and delamination. The test article is a composite

cantileverplate with dimensionsW = 5.08 cm, L = 45.72 cm, and thickness 1.16 mm. The

material properties are again those of Gr/Ep (Table 1) and the stacking sequence is [0°/90°]4s. Two

piezoelectric actuators with dimensions 2.54 cm (width) x 10.16 cm (length) x 0.762 mm

(thickness) are bonded side by side on top of the laminate near the root of the plate as shown in

Fig. 12. The actuators are linked electrically to function as a single unit. The piezoelectric sensors

have the same width and height as the actuators. However, the thickness of the sensors is 0.381

mm. They are placed opposite the actuators on the bottom of the laminate and also function as a

single unit. The first natural frequency of the laminate, which corresponds to the first bending

mode, is c01 = 9.1887 Hz. A damping ratio of _1 = 0.02 is assumed to represent the passive

damping capability already present in the composite material. The laminate is initially loaded with a

static distributed force of q = 30 kg/m 2 which is suddenly released at time t = 0. The sensor and

actuator are coupled to a velocity feedback control loop which is designed to reduce vibratory

amplitudes during the transient response as quickly as possible. Practical limitations dictate that the

voltage supplied to the actuator must not exceed 100 volts. This corresponds to an electric field of

138 V/ram which is well below the maximum allowable electric field of the piezoelectric material.

Five modes are included in the dynamic response analysis.

The test article is first examined with the contro] system turned off. The tip of the laminate is

displaced 1 mm due the static load and is then released. The decay envelope due to passive

damping alone is presented in Fig. 13. In this figure, the transverse displacement at the tip of the

laminate (w) is presented for both the passive case and the active case which will be discussed

shortly'. The 1% settling time (ts), which is the time when the vibrational amplitude become 1% of

the initial amplitude, is determined from the following equation.

12



t,- log_(O.O1)
_lcoi (34)

The 1% settling time for the passive damping case is found to be 3.732 seconds.

Next, the velocity feedback control system is turned on and the gain is selected to appropriately

energize the actuators without exceeding the maximum allowable voltage. The voltage supplied to

the actuators during the transient response is shown in Fig. 14 and does not exceed 100 volts. The

active controls significantly increase the damping ratio of the composite laminate from 0.02 to

0.0513. This reduces the settling time by 61% to 1.455 seconds as shown in Fig. 15. The

transient response for both passive and active cases are presented in Fig. 13 Thus, the

piezoelectric sensor/actuator pair has a significant effect on increasing the damping of the laminate.

Now the effect of delamination on the control system is investigated. Delamination is

introduced in the above test article at the tip of the actuator nearest the fixed end and extends

throughout the width of the actuator at the interface of the bonded actuator and the composite

substructure as shown in Fig. 16 The length of the delamination (Ld) is indicated by the

nondimensional parameter ]3 where ]3 = Ld/L and L is the length of the laminate. As the length of

the delarnination grows, the control authority is reduced since the actuator is less able to transfer

the stresses, which are induced from the piezoelectric actuation, to the substructure. This reduction

in control authority is indicated in Fig. 17 where the settling time is presented for a range of

delamination lengths. The current model allows for both slipping and separation of delaminated

layer (in this case the bonded actuator) from the composite substructure. Separation of the actuator

at 13= l 1% is observed in the sixth mode, which is the fourth bending mode, at a frequency of co6

= 209.8 Hz as shown in Fig 18. Separation of the delaminated actuator layer in one of the lower

modes is unexpected and may significantly influence a more complex dynamic response, such as

the case of a forced response.

Future work

Research plans that are either already under progress or are soon to be implemented are as

follows.

13



• Complete mathematical investigation to study the use of smart materials for vibration control.

• Determine the effect of delamination on the authority of the control system.

• Develop and implement experimental procedure to validate proposed mathematical model.
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Table I. Material properties.

Gr/Ep PZT
E1 (GPa) 143 63.0
E2 (GPa) 9.70 63.0

v12 0.300 0.300
GI2, GI3 (GPa) 6.00 24.2

G23 (GPa) 2.50 24.2

!9 (xl03 Kg/m 3) 1.39 7.60

d3j ( xl0 12 m/V) 253
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Figure 1 Composite laminate cross section.
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Figure 2 Smart composite plate incorporating piezoelectric layers.
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Figure 8 Static deflection due to piezo actuation.

FEM

0 -( ---Q-- experiment

.

-O.2

-O.4

>

-o.6 (3 0-0.8

-1

0 0.2 0.4 0.6 0.8 1

×*

Figure 9 Normalized static displacement FEM and experimental results.
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Figure 11 Static deflection due to piezo actuation including delamination.
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Figure 12 Gr/Ep laminate with bonded piezo sensors/actuators.
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Figure 13 Passive / active transient response.
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z

Figure 18 Separation of delaminated layer in mode 6.
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